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Abstract: The study aimed to evaluate the impact of the early addition of a Saccharomyces cerevisiae 

HD A54 strain before pressing during winemaking. This approach aimed to reduce the dissolved 

oxygen in the grape must, thus preserving the wine characteristics. Two different treatments were 

settled: Trial A, where sulphite or other substances were not added during pressing; and Trial B, where 

a S. cerevisiae strain was added at the pressing stage. The chemical parameters were determined 

through an enzymatic analyzer, which indicated a faster fructose consumption compared to the glucose 

in Trial A. The plate counts were measured to monitor the microbial groups during vinification. Both 

treatments showed regular trends with respect to the Saccharomyces population. Trial B exhibited a 

higher oxygen consumption compared to the control trial, especially in the early stages of winemaking. 

This was determined through a dissolved O2 analysis. Furthermore, Trial B had lower absorbance 

values at the post-pressing and pre-clarification stages. Both the dissolved oxygen and the absorbance 

analyses underscored the positive impact of the S. cerevisiae HD A54 strain in protecting against 

oxidative processes in the grape musts at the pre-fermentative stage. The analysis of volatile organic 

compounds detected 30 different compounds, including alcohols and esters. Trial B had higher alcohol 

levels, particularly hydroxyethylbenzene (135.31 mg/L vs. 44.23 mg/L in Trial A). Trial A had almost 
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a four times higher ethyl acetate concentration than Trial B, which is an indicator of oxidation. 

Interestingly, Trial B showed higher concentrations of 3-methyl-butyl acetate and 2-phenylethyl 

acetate, which are molecules that correspond to fruity (banana) and floreal (rose) aromas, respectively. 

Regarding the sensory analysis, Trial B received better scores for the fruity and floral attributes, as 

well as the overall wine quality. 

Keywords: bio protection; Saccharomyces cerevisiae; sulphite-free; dissolved O2; sensory attributes; 

absorbance 

 

1. Introduction  

Over the past few decades, the winemaking industry has placed a significant reliance on sulphur 

dioxide (SO2) as a preservative due to the numerous critical functions it performs [1]. In the context 

of winemaking, SO2 is an effective agent to combat acetic acid bacteria, lactic acid bacteria, and yeasts, 

thus maintaining the quality of the wine. Additionally, it acts as a potent antioxidant, thereby mitigating 

the effects of dissolved oxygen and inhibiting oxidising enzymes. Grape oxidases (tyrosinase and laccase), 

which are responsible for phenol oxidation and aroma development, are neutralised by SO2 [2]. This 

compound is a broad-spectrum antimicrobial agent that prevents off-flavor formation by inhibiting the 

indigenous microbiota that could otherwise lead to uncontrolled spontaneous fermentation [3]. SO2 

enhances the wine color stability during ageing and facilitates the release of phenolic compounds from 

the grape skin during maceration [4]. Due to its affordability and ability to maintain wine 

characteristics even after bottling, SO2 is widely used in winemaking globally [5–8]. However, there 

are concerns about excessive SO2 levels. The World Health Organization (WHO) has recommended 

the use of alternative methods to either reduce or eliminate the consumption of sulphites, particularly 

in light of the potential negative effects on consumer health, especially for those with allergies or 

sensitivities [2]. Additionally, the International Organization of Vine and Wine (OIV) has been 

gradually lowering the maximum recommended dosage for distributed wines [9]. Furthermore, the 

European Community has mandated that wine containing SO2 must include this information on labels [10]. 

Moreover, global wine consumers have demonstrated a growing inclination towards products that align 

with the natural definition, which is characterized by a minimal use of preservatives and chemicals. 

The objective is to espouse ecologically responsible wine-growing and oenological practices that 

prioritize consumer health [11,12].  

In order to control the microbial populations in the context of winemaking, a number of alternative 

strategies have been explored, including the use of ultraviolet radiation, pulsed electric fields (PEF), 

high pressure, ultrasound, and high hydrostatic pressure treatments [13,14]. Furthermore, researchers 

have investigated the potential of utilizing substances such as chitosan, lysozyme, dimethyl 

dicarbonate, and sorbic acid to address this challenge [6]. In addition to the aforementioned physical 

and chemical methods, there is a biological control alternative, known as bio-protection. The strategy 

is comprised of a series of techniques designed to prevent microbial contamination and to achieve the 

same results typically achieved through the use of SO2. In particular, various microbial species, 

including yeasts (both Saccharomyces and non-Saccharomyces) and bacteria, are introduced at 

different stages of the food production process, either before, during, or after the process [15]. These 

microorganisms act as bio-protectors by employing a range of mechanisms, comprising both passive 
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and active strategies. Passive strategies include the deprivation of resources and the establishment of 

dominance within a colonized space [16–18]. Microorganisms deploy tactics to restrict the competitors’ 

access to resources, including nutrients and oxygen. Furthermore, they secure dominance in terms of 

the space they occupy. Indeed, the nutrients, oxygen, and space are the main parameters that affect the 

population dynamics [19–22]. Conversely, active strategies include the production of several 

molecules with various effects, such as antimicrobial compounds [15]. Notably, to date, no studies 

have evaluated the effect of inoculating a low concentration of Saccharomyces cerevisiae before the 

pressing stage to enhance the defense against oxygen-related issues. 

2. Materials and methods 

2.1. Experimental design and winemaking process 

The experimental plan is reported in Figure 1, and foresaw to evaluate the effect on oxygen 

consumption, organoleptic properties, and volatile compounds using Saccharomyces cerevisiae strains 

during the white vinification process. The Catarratto variety (Vitis vinifera L.) of grapes from a 

vineyard located in San Giuseppe Jato, (37°59′20′′ N; 13°11′34′′ E, Palermo, Sicily, Italy) were 

processed at a laboratory scale in the Department of Agricultural, Food and Forest Sciences (SAAF) 

at University of Palermo. Immediately after harvesting, the grapes were destemmed, crushed, and 

pressed without the addition of any coadjuvant (Trial A). In the second trial (B), 5 g/hL of the S. 

cerevisiae HD A54 strain was added at the pressing stage. The strain was used in its active dry 

yeast (ADY) form, and was rehydrated following the manufacturer’s protocol. Clarification was 

carried out and lasted 24 h at 8 ℃. The following products were used for clarification: Clarification 

Hzym® Extractive FCE G (2 g/hL; HTS Enologia, Marsala, Italy) and Hveg® Vegepure juice (20 g/hL; 

HTS Enologia, Marsala, Italy). SO2 was not added in “A” trial, nor in trial “B” before clarification. 

The Saccharomyces cerevisiae HD A54 strain, provided by HTS Enologia (Marsala, Italy), was 

used as a starter to carry out alcoholic fermentation, which was carried out at 14 ℃. Prior to yeast 

inoculum, each trial was supplemented with 20 g/hL of Hnutrix® B-Starter simplex (HTS Enologia, 

Marsala, Italy), which is a yeast partial autolisate useful as a starting nutrient for ADY. Di-ammonium 

phosphate (DAP; 20 g/L; Chimica Noto s.r.l., Partinico, Italy) was added during alcoholic 

fermentation at 4% (v/v) of ethanol; during the last phase of alcoholic fermentation, 10 g/hL of 

Hnutrix® B-Energia (HTS Enologia, Marsala, Italy), which is a formulation of organic nitrogen and 

micronutrients, was added in order to avoid nutrient starvation during alcoholic fermentation. At 

the end of alcoholic fermentation, the wines were separated from the lees and transferred into a 

clean glass carboy; lastly, 5 g/hL of Hvin®UP Fresh (HTS Enologia, Marsala, Italy), a solution used 

to improve shelf life and to preserve wine aroma, and 8 g/hL of potassium metabisulphite were added. 

The wines were stored at 8 ℃ up to the bottling phase. Sample collection involved the grape must 

during several phases of the vinification process. In detail, the grape must was collected after pressing, 

before, during (12 h of process ongoing), and after clarification, at yeast inoculum, at 3 and 6 days of 

alcoholic fermentation, and at the end of alcoholic fermentation. All samples were immediately 

subjected to analyses. 
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Figure 1. Experimental design of Catarratto wine vinified with or without Saccharomyces 

cerevisiae bio-protective HD A54 strain. 

2.2. Microbiological analyses 

All samples collected during the wine production were analyzed; in particular, the yeast and lactic 

acid bacteria (LAB) populations were monitored. The samples were diluted in Ringer’s solution (Sigma-

Aldrich, Milan, Italy) (ratio 1:10) and analyzed in triplicate for total yeasts (TY) on Wallerstein 

Laboratory (WL) nutrient agar (Condalab, Torrejón de Ardoz, Spain) [23] at 28 ℃ for 72 h, and total non-

Saccharomyces yeast on Lysine Agar (LA) (Thermo Fisher Scientific Inc., Milan, Italy) at 28 ℃ for 5 

days [24]. Mesophilic lactobacilli were detected on de-Man, Rogosa, and Sharpe (MRS) agar 

medium (Condalab, Torrejón de Ardoz, Spain), which were supplemented with cycloheximide (10 mg/mL) 

and incubated under microaerophilic conditions at 30 ℃ for 48 h [25]. Presumptive Saccharomyces spp. 

were calculated as the difference between the total yeast count on WL nutrient agar and the total non-

Saccharomyces.  

2.3. Physicochemical analyses 

2.3.1. Wine composition 

Regarding the chemical parameters monitored during alcoholic fermentation, the pH and total 
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acidity were assessed following the OIV procedures [26,27]. In addition, the remaining monitored 

chemical parameters were detected through enzymatic assays on an iCubio iMagic M9 (iCubio 

Biomedical Technology Co. Ltd., Shenzhen, China); in detail, the quantification of acetic, malic, 

tartaric, and lactic acids was conducted as reported by Matraxia et al. [28]. Furthermore, the ethanol content 

was measured as previously reported by Chawafambira [29]. The reagents were purchased from R-

Biopharm AG (Darmstadt, Germany), and these analyses were performed in triplicate. 

2.3.2. Oenological parameters 

The soluble oxygen was monitored to evaluate the effect of the S. cerevisiae HD A54 strain to 

reduce the oxygen content from post pressing to the end of alcoholic fermentation. To this end, a 

portable dissolved oxygen meter Mod. HQ30D, equipped with Intellical LDO101 Luminescence/Optical 

dissolved oxygen probe (Hach Lange S.r.l, Milan, Italy), was employed. The samples were analyzed for 

the absorbance using a 420 nm optical path before, during, and after clarification, at the inoculum, and at 

the end of alcoholic fermentation by spectrophotometer (UV-1601-Shimadsu, Tokyo, Japan).  

2.4. Analysis of Volatile Organic Compounds (VOCs) in wine samples 

2.4.1. Standard solutions  

The standards for each compound were individually purchased from Sigma-Aldrich (82024 

Taufkirchen, Germany). 2,3-butanediol was used as the standard for the alcohol fraction, acetoin as 

the standard for the carboxyl-function fraction, and ethyl lactate as the standard for the ester fraction. 

In addition, n-alkane standards (C8 to C40) were purchased from the Aldrich Chemical Co. (St. 

Louis, Mo., USA). The standard solutions of each compound were prepared at five different 

concentrations: 2,3-butanediol (53.2 mg/L, 112.5 mg/L, 225.0 mg/L, 262.0 mg/L, and 450.0 mg/L); 

acetoin (24.7 mg/L, 45.70 mg/L, 64.7 mg/L, 115.6 mg/L, 173.30 mg/L, and 289.8 mg/L); and ethyl 

lactate (79.0 mg/L, 134.0 mg/L, 224.0 mg/L, 326.0 mg/L, and 477.0 mg/L). 

2.4.2. Extraction, identification and quantification of VOCs by GC-MS 

In order to determine the volatile organic composition, the procedure outlined by Francesca et al. [30] 

was applied. In detail, the wine samples (10 mL) from all trials were mixed with MS SupraSolv® 

dichloromethane (5 mL) in a 50 mL conical flask. The mixture was stirred at room temperature for 30 min 

and then centrifuged at 4000 rpm for 10 min using a Low-Speed Centrifuge (ScanSpeed 416) with a 

Swing Rotor (LaboGene ApS Industrivej 6–8, Vassingerød, DK-3540 Lynge, Denmark). The aqueous 

phase was removed, and anhydrous sodium sulphate (1 g) was added before centrifugation at 4000 rpm 

for 5 min. The dichloromethane layer was removed and dried under N2 gas to 0.3 mL. 

Gas chromatographic analyses were performed with the Agilent 7000C GC system, fitted with a 

fused silica Agilent DB-5MS capillary column (30 m × 0.25 mm i.d.; 0.25 μm film thickness), coupled 

to an Agilent triple quadrupole Mass Selective Detector MSD 5973 (ionization voltage 70 eV; electron 

multiplier energy 2000 V; transfer line temperature 295 ℃; solvent delay: 3.5 min). Helium was the 

carrier gas (1 mL/min).  

The temperature was initially maintained at 40 ℃ for 1 min. Then, it was gradually increased 
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to 250 °C at a rate of 3 ℃/min for 30 min, and finally maintained at 250 ℃ at 10 ℃/min. One μL of 

sample was automatically injected at 250 ℃ and in the splitless mode, where the transfer line 

temperature was 295 ℃. The individual peaks were analyzed using the GC MS Solution package, 

Version 2.72. The identification of compounds was carried out using Adams, NIST 11, Wiley 9, and the 

FFNSC 2 mass spectral database. These identifications were also confirmed by other published mass 

spectra and linear retention indices (LRI). The LRIs were calculated using a series of n-alkanes (C8–C40). 

Quantification was carried out using the three calibration lines. For compounds belonging to other 

classes than the standards, similarity was used for quantification.  

2.5. Quantitative descriptive sensory analysis 

In order to determine the sensory profiles of the experimental wines, a quantitative descriptive 

analysis was conducted by following the methodology reported by Jackson [31]. 

Each panelist had a strong experience on winemaking and sensory analyses, and were picked 

among people who already participated in past similar studies as judges. There was a total of 14 trained 

judges, consisting in 7 men and 7 women between the ages of 26 and 63 years old. In order to assess 

their sensory skills, they were previously subjected to a test based on flavors and tastes associated to 

the wines. Several descriptive attributes were chosen to evaluate the experimental wines in terms of 

the odor appearance, mouth feel, gustatory taste, flavor, and overall quality. Other descriptors regarded 

the identification and quantification of off-odors and off-flavors connected to microbial aspects and a 

list of several other attributes referring to pungent, putrid, and petroleum [32]. 

Each individual attribute was assessed by scoring on an unstructured 9 cm scale. Lastly, every 

panelist judged each sample in triplicate with a different wine bottle every time. An incomplete 

balanced block design was utilized to reduce the contrast impact between the samples [33].  

2.6. Statistical analysis 

The XLStat software for Excel, version 2020.3.1 (Addinsoft, New York, USA), was used to process 

the statistical data and to generate the graphics. In particular, the physicochemical, microbiological, 

oenological, VOC, and sensory data were submitted to a one-way analysis of variance (ANOVA). The 

Tukey’s test was performed to make the comparisons, and statistical significance was attributed to p < 0.05. 

3. Results and discussion 

3.1. Microbiological monitoring 

During fermentation, the yeast populations were investigated (Figure 2), and the indigenous non-

Saccharomyces population in the grape must was found to be 4.8 Log CFU/mL. Notably, the 

Saccharomyces species was not detected in the grape must, which is consistent with previous 

studies [34–36]. Additionally, low concentrations of LAB were observed at the start of the vinification 

process (<4.0 Log CFU/mL). However, these LAB levels are comparable to those found by 

Sannino et al. [37] on SO2 free grape must. In Trial B, the S. cerevisiae HD A54 strain was inoculated 

during the pressing phase at a density between 3.4–3.5 Log CFU/mL. In Trial A, the presumptive S. 

cerevisiae population was slightly above the detection limit (2.1 Log CFU/mL). Interestingly, the 
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presumptive S. cerevisiae levels remained stable during the clarification phase in Trial A, while there 

was a small increase in the presumptive S. cerevisiae levels in Trial B due to cell multiplication of the 

inoculated S. cerevisiae HD A54 strain. Although no literature studies specifically address the addition 

of bioprotective S. cerevisiae, this increase can be considered a regular growth pattern for an inoculated 

S. cerevisiae strain within a few hours [38]. 

In both Trials A and B, there was a consistent trend in non-Saccharomyces count values, with a 

slight decrease observed. The S. cerevisiae HD A54 strain was inoculated at a level of 6.0 Log CFU/mL 

in these trials. During alcoholic fermentation, both the presumptive Saccharomyces and presumptive 

non-Saccharomyces populations increased, reaching their peak at three days in Trial A and up to six days 

in Trial B. The fermentation kinetics of the S. cerevisiae population followed a regular pattern (Figure 2), 

which aligns with the findings of Morgan et al. [39] regarding SO2-free grape must.  

 

Figure 2. Trend of Yeast and bacteria population (Log CFU/mL) during alcoholic 

fermentation: (A) Trial A microorganism levels; (B) Trial B microorganism levels. 

Abbreviations: AF, alcoholic fermentation; LAB, lactic acid bacteria. 
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3.2. Physicochemical analyses 

3.2.1. Wine composition 

The key chemical parameters (sugars, organic acids, pH, total acidity, and glycerol) determined in the 

must and wine are reported in Table 1. Initially, the musts showed a sugar concentration of 275.7 g/L, a pH 

of 3.25, tartaric acid at 5.08 g/L, and malic acid at 1.36 g/L. The sugar consumption and acetic acid 

production showed similar trends between the treatments during alcoholic fermentation. However, the 

fructose values significantly differed, with Trial A showing consumption due to indigenous non-

Saccharomyces yeasts that favor fructose [40]. Despite this, both treatments reached similar residual 

sugar levels (Figure 3). At the end of fermentation, the acetic acid levels were comparable to those 

reported by Alfonzo et al. [41] on “Catarratto bianco lucido” cultivar, which was likely influenced by the 

bioprotective effect of the HD A54 strain. Indeed, several S. cerevisiae strains exert their antimicrobial 

effect through the production of killer toxins or other inhibitory substances [42]. Alcoholic fermentation 

concluded in 12 days for both treatments, which resulted in residual sugar values below 2.0 g/L. 

Throughout the vinification process, no significant differences were found between the trials in 

terms of the acetic, malic, tartaric, or lactic acid, and the glycerol content. The ethanol levels were 

monitored at various sampling points during fermentation. Initially, both treatments showed similar 

ethanol values; however, by the sixth day, Trial A had a higher ethanol content (5.88 %) compared to 

Trial B (3.46 %). This trend continued, with Trial A reaching 13.34 % ethanol by the ninth day, 

while Trial B remained at 11.06 %. Ultimately, both treatments completed alcoholic fermentation 

with a similar ethanol content (14.10 % for Trial A and 14.04 % for Trial B), thus indicating 

successful fermentation. 

 

Figure 3. Bar chart of glucose and fructose detected throughout the vinification process. 

Result indicates mean value ± standard deviation of two determinations from three 

replicates. Data displaying different letters at the top of each bar are significantly different 

(P value < 0.05), according to Tukey’s test. Abbreviations: RS, residual sugar. 
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Table 1. Chemical parameters determined during the winemaking process. 

Parameters Must    Vinification  
 

 Pre-clarification Post-clarification 3 d of alcoholic fermentation  

 A B S.S. A B S.S. A B S.S. 

Residual sugar Ψ 275.70 ± 3.41 269.6 ± 4.81a 273.80 ± 4.76a n.s. 262.67 ± 8.44a 271.19 ± 7.74a n.s. 255.05 ± 7.97a 265.61 ± 4.57a n.s. 

Fructose Ψ 156.15 ± 2.31 146.28 ± 0.46b 156.01 ± 0.46a *** 146.10 ± 1.55b 155.39 ± 1.59a ** 139.40 ± 3.51a 149.66 ± 6.04a n.s. 

Glicerol Ψ 0.00 ± 0.00 0.05 ± 0.01a 0.04 ± 0.01a n.s. 0.115 ± 0.00a 0.11 ± 0.00a n.s. 0.54 ± 0.02a 0.35 ± 0.13a n.s. 

Acetic acid Ψ 0.00 ± 0.00 0.00 ± 0.00a 0.00 ± 0.00a n.s. 0.00 ± 0.00a 0.00 ± 0.00a n.s. 0.08 ± 0.02a 0.07 ± 0.01a n.s. 

Malic acid Ψ 1.36 ± 0.03 1.37 ± 0.02a 1.36 ± 0.00a n.s. 1.37 ± 0.03a 1.35 ± 0.00a n.s. 1.29 ± 0.07a 1.31 ± 0.01a n.s. 

Tartaric acid Ψ 5.08 ± 0.05 4.33 ± 0.05a 4.56 ± 0.24a n.s. 4.04 ± 0.19a 4.09 ± 0.00a n.s. 4.85 ± 0.30a 4.42 ± 0.15a n.s. 

Lactic acid Ψ 0.00 ± 0.00 0.00 ± 0.00a 0.00 ± 0.00a n.s. 0.00 ± 0.00a 0.00 ± 0.00a n.s. 0.02 ± 0.01a 0.03 ± 0.00a n.s. 

Ethanol  0.00 ± 0.00 0.22 ± 0.07a 0.09 ± 0.04a n.s. 0.39 ± 0.16a 0.14 ± 0.09a n.s. 0.84 ± 0.22a 0.41 ± 0.23a n.s. 

Parameters 6 d of alcoholic fermentation 9 d of alcoholic fermentation End of alcoholic fermentation 

A B S.S. A B S.S. A B S.S. 

Residual sugar Ψ 157.00 ± 4.49b 202.25 ± 8.38a *** 11.75 ± 3.89b 57.60 ± 1.40a *** 1.53 ± 0.00a 0.51 ± 0.06b *** 

Fructose Ψ 104.51 ± 7.48b 126.77 ± 2.08a ** 9.63 ± 1.36b 52.61 ± 0.52a *** 0.47 ± 0.06a 0.07 ± 0.07b ** 

Glicerol Ψ 4.98 ± 0.16a 6.20 ± 1.62a n.s. 6.58 ± 0.04a 7.12 ± 0.40a n.s. 7.05 ± 0.37a 6.77 ± 0.25a n.s. 

Acetic acid Ψ 0.20 ± 0.03a 0.17 ± 0.01a n.s. 0.10 ± 0.01a 0.10 ± 0.03a n.s. 0.07 ± 0.01a 0.07 ± 0.03a n.s. 

Malic acid Ψ 1.25 ± 0.01a 1.24 ± 0.04a n.s. 1.23 ± 0.05a 1.24 ± 0.10a n.s. 1.21 ± 0.05a 1.20 ± 0.05a n.s. 

Tartaric acid Ψ 4.44 ± 0.11a 4.11 ± 0.13b * 4.17 ± 0.17a 3.89 ± 0.17a n.s. 3.55 ± 0.05a 3.67 ± 0.17a n.s. 

Lactic acid Ψ 0.01 ± 0.00a 0.02 ± 0.01a n.s. 0.00 ± 0.00a 0.00 ± 0.00a n.s. 0.00 ± 0.00a 0.00 ± 0.00a n.s. 

Ethanol  5.88 ± 0.25a 3.46 ± 0.31b *** 13.34 ± 0.21a 11.06 ± 0.12b *** 14.04 ± 0.03a 14.10 ± 0.04a n.s. 

Result indicates mean value ± standard deviation of two determinations from three replicates. Data within a row followed by the same letter are not significantly different according to Tukey’s test. Tukey’s 

test was not applied on must values. P value: *, P < 0.05 **, P < 0.01; ***, P < 0.001. Ψ, expressed in g/L; , expressed as % (v/v). Abbreviations: SS, statistical significance; n.s., not significant.
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3.2.2. Oenological parameters 

The monitoring of oxygen levels during the clarification process is depicted in Figure 4. Following 

the completion of the pressing process, the oxygen concentration was found to be 4.67 mg/L in Trial A. In 

comparison, Trial B, which included the bio-protective HD A54 strain, demonstrated a significantly lower 

oxygen concentration of 3.40 mg/L. As stated by Catarino et al. [43], several winemaking operations, 

particularly the pressing stage, contribute to the uptake of oxygen. The considerable difference in the 

dissolved oxygen levels between Trial A and Trial B at this detection point, amounting to almost 30% less 

in Trial B, provides clear evidence of the beneficial impact of the bio-protective strain shortly after its 

addition. Both trials exhibited a comparable trend in dissolved oxygen during clarification; however, the 

disparity between the treatments persisted until the start of the clarification process, after which the 

differences leveled out. Furthermore, the dissolved oxygen concentrations exhibited a further decline at the 

inoculum stage for both trials. In particular, Trial A showed a reduction of 19.49% from the previous 

detection point, with a value of 1.02 mg/L. Trial B exhibited an even more pronounced reduction, with a 

decrease of 30.33% from the previous detection point, thus resulting in a value of 0.74 mg/L of dissolved 

oxygen at the inoculum stage. Additionally, slight differences between the treatments were evident at this 

detection point and at the end of alcoholic fermentation, as highlighted by the ANOVA. 

 

Figure 4. Bar chart of dissolved O2 detected in must during pre-fermentative phase. Result 

indicates mean value ± standard deviation of two determinations from three replicates. 

Data within a sampling point followed by the same letter are not significantly different 

according to Tukey’s test. Data followed by different letters are significantly different (P 

value < 0.05). Abbreviations: AF, alcoholic fermentation. 

In Figure 5, the absorbance values at 420 nm can be observed. The absorbance consistently 

decreased as the clarification proceeded. Following the pressing stage, Trial A showed significantly 

higher values (0.429) than Trial B (0.378). These findings slightly exceed the range reported by Darias-

Martı́n et al. [44], who observed values between 0.2 to 0.6 after pressing, albeit with the addition 
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of 40 mg/L of potassium metabisulphite immediately post-pressing. The trend persisted at the second 

detection point, where Trail B demonstrated the bioprotective effect of the HD A54 strain, thus yielding 

a lower value (0.295) than Trial A (0.348). 

 

Figure 5. Bar chart of absorbance detected in must during pre-fermentative phase. Result 

indicates mean value ± standard deviation of two determinations from three replicates. 

Data within a sampling point followed by the same letter are not significantly different 

according to Tukey’s test. Data followed by different letters are significantly different (P 

value < 0.05). Abbreviations: AF, alcoholic fermentation; n.s., not significant. 

Clarification, a common winemaking procedure, aims to enhance the wine appearance by reducing 

browning issues and achieving a greater clarity [45]. Interestingly, no significant differences were found 

between the treatments from this point until the end of alcoholic fermentation. Both the dissolved oxygen 

and absorbance analyses underscore the positive impact of the S. cerevisiae HD A54 strain in protecting 

against oxidative processes in the musts, especially during the phase between pressing and clarification.  

3.3. VOCs 

Table 2 reports the VOC composition, which consists of 30 compounds grouped into six classes: 

Alcohols, aldehydes, ketones, carboxylic acids, esters, and others. Alcohols were the most abundant, with 

Trial A containing a total of 117.58 ± 12.78 mg/L and Trial B containing a total of 189.49 ± 12.63 mg/L. 

Among the alcohol compounds, hydroxyethylbenzene exceeded the perception threshold. This 

compound is linked to floral odors [46,47]. Notably, Trial B had a higher concentration of this 

compound (135.31 mg/L) compared to Trial A (44.23 mg/L). Additionally, 3-methyl-thio-1-propanol 

was more pronounced in Trial A (2.01 mg/L) than in Trial B, where it remained below the perception 

threshold. This particular compound is associated with an unpleasant odor reminiscent of a cooked 

potato [48]. The differences in the VOC composition between the two trials suggest that the HD A54 

strain may have positively influenced Trial B.  
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Table 2. Volatile organic compounds of experimental wines. 

LRI Compounds (Common name) Odour Perception Threshold Trial A (mg/L) Trial B (mg/L)  

     S.S. 

 ∑Alcohols  117.58 ± 12.78b 189.49 ± 12.63a * 

607 2-methyl-1-propanol 40 mg/L [49] 1.00 ± 0.41a 0.00 ± 0.00b * 

764 1-pentanol 80 mg/L [50] 59.92 ± 5.32a 50.13 ± 4.08a n.s. 

765 1,2-propanediol Unknown 0.52 ± 0.07a 0.86 ± 0.14a n.s. 

824 2,3-butanediol 120 mg/L [51] 2.88 ± 0.27a 0.00 ± 0.00b *** 

856 3-methyl-1-pentanol Unknown 0.25 ± 0.08a 0.14 ± 0.03a n.s. 

878 1-hexanol 8 mg/L [52] 0.91 ± 0.08a 0.45 ± 0.09b * 

983 3-methyl-thio-1-propanol 1 mg/L [53] 2.01 ± 0.09a 0.85 ± 0.04b *** 

1134 Hydroxyethylbenzene 10 mg/L [46,47] 44.23 ± 5.29b 135.31 ± 7.97a *** 

1314 2-methoxy-4-methyl-phenol Unknown 0.82 ± 0.05a 0.36 ± 0.11b *** 

1432 4-hydroxyphenyl ethanol Unknown 4.11 ± 1.05a 0.91 ± 0.09b * 

1505 2,4-di-tert-butyl phenol 0.2 mg/L [50] 0.93 ± 0.07a 0.48 ± 0.08b * 

 ∑Aldehydes  3.03 ± 0.44a 2.16 ± 0.40a n.s. 

1224 3,4-dimethyl benzaldehyde Unknown 0.80 ± 0.15a 0.51 ± 0.12a n.s. 

2020 Octadecanal Unknown 2.23 ± 0.29a 1.65 ± 0.28a n.s. 

 ∑Ketones   2.04 ± 0.54a 1.56 ± 0.30a n.s. 

722 3-hydroxy-2-butanone 30 mg/L [49] 0.49 ± 0.00a 0.51 ± 0.12a n.s. 

964 4-hydroxy-2-butanone Unknown 1.03 ± 0.51a 0.74 ± 0.11a n.s. 

1285 2-hydroxy-2-methyl-1-phenyl-

1-propanone 

Unknown 0.52 ± 0.03a 0.31 ± 0.07b * 

 ∑Carboxylic acids  4.47 ± 0.53a 0.94 ± 0.16b ** 

590 Acetic acid 200 mg/L [54] 0.63 ± 0.08a 0.00 ± 0.00b * 

916 4-hydroxy butanoic acid  Unknown 0.36 ± 0.06a 0.12 ± 0.04b ** 

1015 Hexanoic acid 0.42 mg/L [52] 0.27 ± 0.08a 0.00 ± 0.00b ** 

1195 Octanoic acid 2.20 mg/L [55] 3.21 ± 0.31a 0.82 ± 0.12b ** 

 ∑Esters  15.85 ± 3.50a 15.82 ± 2.39a n.s. 

589 Ethyl acetate  7.5 mg/L [54] 8.25 ± 0.99a 2.14 ± 0.62b ** 

803 Ethyl lactate 60 mg/L [56] 0.15 ± 0.02a 0.29 ± 0.06a n.s. 

886 3-methyl-butyl acetate 0.03 mg/L [52] 2.99 ± 0.86b 7.84 ± 0.53a *** 

941 Ethyl 3-hydroxy butanoate Unknown 0.21 ± 0.08a 0.16 ± 0.04a n.s. 

1002 Ethyl-butyl acetate Unknown 1.40 ± 0.62a 0.76 ± 0.06a n.s. 

1199 Ethyl octanoate  0.005 mg/L [52] 0.66 ± 0.21b 1.40 ± 0.23a ** 

1260 2-phenylethyl acetate 0.25 mg/L [57] 1.51 ± 0.63b 3.08 ± 0.77a * 

1386 Ethyl-9-decenoate Unknown 0.61 ± 0.07a 0.15 ± 0.08b * 

1395 Ethyl decanoate 0.2 mg/L [52] 0.07 ± 0.02a 0.00 ± 0.00b *  

∑Others  0.25 ± 0.05a 0.17 ± 0.07a n.s. 

1768 3-(2-hydroxyethyl) -indole Unknown 0.25 ± 0.05a 0.17 ± 0.07a n.s. 

Result indicates mean value ± standard deviation of two determinations from three replicates. Data within a row followed by the same 

letter are not significantly different according to Tukey’s test. P value: *, P < 0.05 **, P < 0.01; ***, P < 0.001. Abbreviations: SS, 

statistical significance; n.s., not significant. 
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As the second most prevalent class of compounds, the esters had concentrations of 15.85 ± 3.50 

for Trial A and 15.82 ± 2.39 mg/L for Trial B. Ethyl acetate, a prominent ester, exhibited significantly 

higher levels in Trial A (8.25 mg/L) compared to Trial B (2.14 mg/L), which remained below the 

threshold [54]. Interestingly, ethyl acetate serves as an indicator of oxidation: lower ester values 

correlate with a greater protection against oxidation [58]. In terms of fruity aromas, Trial B stood out 

due to the presence of 3-methyl-butyl acetate (banana-associated) [59] and ethyl octanoate (with pear and 

pineapple notes) [59], measuring 7.84 mg/L and 1.40 mg/L, respectively. Although Trial A recorded values 

above the perception threshold, they were significantly lower than those in Trial B (2.99 and 0.66 mg/L, 

respectively). Additionally, Trial B exhibited a higher concentration of 2-Phenylethyl acetate, an ester 

associated with flowery notes [47], at 3.08 mg/L, compared to Trial A at 1.51 mg/L. 

Another represented class was carboxylic acids, which are often linked to unwanted odors in 

wine [30]. Surprisingly, all carboxylic acids remained below the perception threshold in this study. 

However, it is essential to note that hexanoic acid and octanoic acid are typically responsible for unpleasant 

odors such as fatty, cheesy, and rancid smells. In the bio-protected treatment (Trial B), these acids were 

either entirely absent or below the perception threshold. In Trial A, hexanoic acid remained below the 

threshold (0.42 mg/L), while octanoic acid was perceptible at a concentration of 3.21 mg/L. 

Furthermore, acetic acid, a key indicator of wine spoilage and quality reduction [60], remained below 

the perception threshold in Trial A and was totally absent in Trial B. 

3.4. Sensory analysis 

Figure 6 displays a radar plot generated after a sensory evaluation of the experimental wines. 

Notably, the two treatments showed variability, particularly in the odor attributes. Bio-protected Trial 

B scored higher in several odor-related attributes, except for the “off-odor” attribute, where Trial A 

had a slightly greater score. The “fruity” attribute received a definitively higher score for Trial A, thus 

aligning with the VOC analysis that highlighted compounds associated with fruity aromas, such as 3-

methyl-butyl acetate and ethyl octanoate. Similarly, in terms of the floral attribute, the judges favored 

Trial B, which is consistent with the VOC analysis that showed higher values for hydroxyethylbenzene 

and 2-phenylethyl acetate, both associated with floral scent, specifically rose. 

Considering these findings, Trial B scored better in terms of complexity and the overall odor 

quality. Interestingly, the scores for fruity and floral attributes closely resembled those reported in a 

study by Alfonzo et al. [41] on Catarratto wines produced with different S. cerevisiae strains. As for 

the taste descriptors, Trial B received a higher score for intensity, while Trial A scored better in the 

smoothness attribute. Although mouthfeel-related attributes are often linked to a higher concentration 

of glycerol produced by certain non-Saccharomyces yeast strains [61,62], this study did not highlight 

significantly higher glycerol production in Trial A nor a greater non-Saccharomyces yeast population. 

Nevertheless, Trial B received a higher score for the descriptor “taste overall quality”. Overall, the 

judges preferred the attributes associated with Trial B. 
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Figure 6. Radar plot generated by sensory analysis conducted on experimental wines. Result 

indicates mean value ± standard deviation of two determinations from three replicates. P value: 

*, P < 0.05 **, P < 0.01; ***, P < 0.001. Abbreviations: T, taste; O, odour. 

4. Conclusions 

In recent years, reducing SO2 levels in winemaking has gained importance. Bioprotective yeasts 

offer winemakers a valuable solution by limiting the growth of unwanted microorganisms, preserving 

the product quality, and optimizing the space utilization. Current research primarily focuses on non-

Saccharomyces yeasts such as Torulaspora delbrueckii and Metschnikowia pulcherrima to play a bio-

protection role and to enhance the sensory aspects, which are particularly crucial in this context. The 

use of non-Saccharomyces yeasts could deeply influence the wine quality, thereby producing peculiar 

metabolites and potentially affecting other wine parameters such as acidity and alcohol content. This 

study evaluated the bio-protective properties of a specific S. cerevisiae strain which was added during 

the pre-fermentative stage throughout winemaking. Specifically, the addition of the HD A54 S. 

cerevisiae strain positively influenced the dissolved O2 levels from post-pressing until the end of 

fermentation. Additionally, it impacted the absorbance values, particularly before clarification, thus 

mitigating the browning effects. Furthermore, the VOC composition revealed an enhanced protection 

in the bio-protected trial, specifically for compounds associated with fruity and floral aromas. A 

sensory evaluation by judges confirmed these findings, with Trial B receiving higher scores for floral 

and fruity attributes. Overall, the wines treated with S. cerevisiae HD A54 after pressing were favorably 

evaluated. Finally, this strain successfully facilitated must fermentation without the need for SO2, thus 

suggesting its potential use in wine fermentation to either eliminate or decrease the utilization of sulphites. 
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