

7TH INTERNATIONAL CONFERENCE ON MICROBIAL DIVERSITY

AGRIFOOD MICROBIOTA AS A TOOL FOR A SUSTAINABLE FUTURE

> September 26-29 • 2023 PARMA, ITALY

Book of Abstract

Non-conventional yeasts (*Starmerella lactis-condensi* and *Candidaoleophila*) and Lactic Acid Bacteria (*Lactiplantibacillus plantarum* and *Oenococcus oeni*) in sequentially inoculated fermentations: a strategy to improve aroma of Catarratto wine

<u>Prestianni Rosario</u>¹, Naselli Vincenzo¹, Pirrone Antonino¹, Guzzon Raffaele², Vaglica Alessandro¹, Vagnoli Paola³, Krieger Sibylle⁴, Notarbartolo Giuseppe⁵, Alfonzo Antonio¹, Francesca Nicola¹

¹ Università degli studi di Palermo

² Fondazione Edmund Mach

³ Lallemand Italia

⁴ Lallemand

⁵Azienda Agricola G. Milazzo

Corresponding Author: rosario.prestianni@unipa.it

Catarratto is one of the most common non-aromatic white grape varieties cultivated in Sicily (Southern Italy). To improve the aromatic expression of Catarratto wines, different combinations of non- Saccharomyces strains and Lactic Acid Bacteria (LAB) were applied during experimental vinification. Two non-Saccharomyces strains, (Starmerella lactis-condensi MN412 and Candida oleophila YS209) isolated from "manna" and two commercial strains of lactic acid bacteria (Lactiplantibacillus plantarum MLPrimeTM and Oenococcus oeni VP41TM) were used in sequentially inoculated fermentations. The strain Saccharomyces cerevisiae (QA23TM) was inoculated to complete the alcoholic fermentation. Control trials were conducted without the inoculum of non-Saccharomyces and/or LAB strains. The experimental design resulted in nine different treatments (S1-S9). Microbiological counts showed the ability of St. lactis-condensiand C. oleophila to persist at high cell densities (6.0 Log CFU/mL and 5.5 Log CFU/mL, respectively) up to six days of fermentation. L. plantarum and O. oeni performed malolactic fermentation in the inoculated trials (with levels above 7.0 and 8.0 Log CFU/mL respectively). The dominance of the two non-Saccharomyces strains over native yeast populations was estimated to be more than 90 % as revealed by genotypic strain typing. In terms of chemical parameters, St. lactis-condensi increased glycerol content by about 2-3 g/L and C. oleophila showed lower acetic acid content than the other trials. The use of St. lactis-condensior C. oleophila increased the aromatic complexity of the wines as reflected by volatile organic compounds (VOCs) composition and sensory profiles. Forty-two VOCs were identified, and they were mainly represented by esters (ethyl acetate, ethyl octanoate and ethyl lactate), alcohols (1-pentanol and 2,3- Butanediol), aldehydes, ketones and carboxylic acids. Results of sensory analysis showed a significant increase of floreal/fruity intensity and complexity of Catarratto wines produced with C. oleophila and St. lactis-condensi in combination with L. plantarum.

P81